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 Evidence for an 
 accelerating universe



  

 Data-driven cosmology

Cosmology is awash with good quality data

    CMB anisotropies   (WMAP, QUIET, ACT, Planck ...)

    Type Ia supernovae   (SNLS, SDSS, DES ...)

    Galaxy redshift surveys   (SDSS, WiggleZ ...)



  

 Well-developed theory

Highly-developed theoretical model

FLRW spacetime with perturbations

Linear regime well-understood

Mature computer codes



  

 Theory fits the data

Theoretical model predictions match available 
data beautifully

Dark matter + dark energy required

ΛCDM: “Concordance” model



  

Baryon Acoustic
Oscillations
(Anderson et al. 2012)

CMB Power Spectrum
(Shirokoff et al. 2010)



  

 Problems with ΛCDM

Numerous puzzles (mostly about dark energy)
e.g. cosmological constant problem, coincidence problem, ...

ΛCDM is a phenomenological model

Underlying physics is not understood



  

 ΛCDM as a model of spacetime

What does the phenomenological model 
actually tell us about spacetime?

The real spacetime is inhomogeneous

ΛCDM parameters (H0, Ωm, ...) denote 
“average” or “typical” properties



  

 Inhomogeneity and 
 the Fitting Problem



  

 Fitting Problem

Want to fit homogeneous, isotropic model to 
observations of real “lumpy” Universe

There is no real FLRW spacetime, just some 
idealised theoretical entity

Ellis & Stoeger (1987): What fitting procedure 
makes the most sense?



  

 Averaging Problem

But also want a model that tracks the average 
evolution of the spacetime



  

 Averaging Problem

Spatial averaging procedure is not well 
defined

Scalar averaging? Covariant averaging?

Review by van den Hoogen (arXiv:1003.4020)



  

 Model mismatch

In general, the model that fits the 
observations need not be the same as the one 
that describes the average evolution

Models of backreaction invoked to explain 
dark energy

Review by Räsänen (arXiv:1102.0408)



  

 Key question

What is meant by “acceleration” in an 
inhomogeneous universe?

Clearly, there are different types



  

 Acceleration measures



  

 Types of acceleration

Define possible measures of acceleration, 
based on observational and/or theoretical 
procedures

Relate measures to observables and/or 
underlying properties of spacetime



  

 Deceleration parameters

Convenient to re-use “deceleration 
parameter” notation from FLRW models

q < 0 means acceleration



  

 Local volume acceleration

3+1 decomposition of spacetime;
write down Einstein equations, e.g.

“Local volume” deceleration parameter:



  

 Local volume acceleration

Determines whether the expansion of 
spacetime itself is accelerating

Acceleration can vary from place to place

For acceleration, need dark energy or 
cosmological constant



  

 Hubble diagram acceleration

Fit FLRW distance-redshift relation to 
observations

Deceleration parameter in fitted model:



  

 Hubble diagram acceleration

Corresponds to what observers actually do 
with supernova data

Defined in any spacetime, but must deal with 
anisotropies in d(z)

Need to solve null geodesic equations 
(difficult in general)



  

 Spatial average acceleration

Choose a foliation of spacetime and average 
scalars over spacelike domain

Use spatial volume to define a scale factor in 
“spatial average” model



  

 Spatial average acceleration

Write down evolution equations for “spatial 
average“ model  (Buchert 2000, Marochnik 1975)

 

Get extra “backreaction” term because spatial 
averaging and time evolution don't commute



  

 Spatial average acceleration

Define deceleration parameter:

Condition for acceleration now also depends 
on backreaction term



  

 Kristian-Sachs local observables

Generalised local series expansion of 
distance-redshift relation  (Kristian & Sachs 1966)

Define deceleration parameter:



  

 Summary of measures

1    “Local”: Raychaudhuri equation

2    “Observational”: from Hubble diagram

3    “Average”: Spatial average (scalar averaging)

4    “Kristian-Sachs”: Local observables



  

 Inhomogeneous models
 

  Statistically-homogeneous spacetimes



  

 Spherical collapse model

Disjoint FLRW models

Simple, intuitive toy model

1) Expanding vacuum region (voids)
2) Collapsing dust region (overdensities)

Set Λ = 0 in all that follows



  

 Geometry of system

Disjoint; no need to specify global 
arrangement of regions

But need this for ray tracing!

Photons travel a distance through each region 
that is proportional to its proper volume



  

 Distance-redshift relation

Plot distance modulus (log dL(z) normalised 
to vacuum)

Flat in vacuum region

Positive in accelerating expanding region

Negative in decelerating expanding region



  

Observed dA(z)

Effective distance-redshift 
relation in “spatial average” 
model

Distance modulus



  

Distance modulus (relative to vacuum)

Distance modulus (relative to “spatial average”)
(Grey: Smaller FLRW region sizes)

Average observational dA(z)

Distance-redshift relation in 
“spatial average” model

Local volume acceleration



  Jagged average is an artefact

Distance modulus (relative to “spatial average”)
(Grey: Smaller FLRW region sizes)



  

 Is the model reasonable?

Not a continuous solution to Field Equations

Arbitrary “arrangement” of regions

Note: Spatial average has not been fit to 
average observational relation



  

 Kasner-EdS model

Kasner: anisotropic vacuum (plane-parallel)

Can match to collapsing FLRW dust region

Exact solution to Einstein Field Equations



  

 Planar symmetry

Only concerned with direction orthogonal to 
matching plane

Define 1D average along this direction



  

Distance modulus



  

Kasner-EdS distance modulus curves



  

 Summary

Statistically homogeneous models:

    Spatial average model matches model 
    inferred from observations

    Neither bear much relation to behaviour 
    of local spacetime



  

 Inhomogeneous models
 

  Giant void models



  

 Lemaitre-Tolman-Bondi

Spherically-symmetric, inhomogeneous, 
dust-only spacetime

Isotropic about central observer

Analytic solutions



  

 Giant void models

Hubble-scale underdensity reproduces ΛCDM 
distance-redshift relation

Alternative model for dark energy
(But now ruled out, see e.g. Bull, Clifton & Ferreira 2012)



  

 Isotropy and homogeneity

Isotropic only about central observer

Not statistically homogeneous

No natural choice of spatial averaging domain



  

Distance-redshift relation
(centre vs. off-centre)

Central observer
Off-centre
(Looking in/out of void)

Off-centre
(Monopole)



  

Deceleration parameters

z < 1.0z < 1.0

z < 0.1

Spatial average/ 
  local volume



  

Distance modulus (vs. averaging domain)

rD  =  1000 Mpc  /  3000 Mpc



  

 Summary

Giant void models:

    No sensible averaging scale; sensitive 
    to arbitrary choice

    Spatial average / local volume acceleration 
    bear little relation to observations



  

 Conclusions



  

 Conclusions

Fitting a homogeneous model to the real, 
lumpy Universe is an ambiguous procedure

Can define several different “types” of 
acceleration in general

Acceleration inferred from observations need 
not correspond to local acceleration of 
spacetime

P. Bull & T. Clifton, PRD 85 103512 (2012); arXiv:1203.4479
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